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ABSTRACT 

The pressure, flow, and power characteristics of a vortex valve a r e  

altered by changing the geometry of the unit. An index was developed for 

evaluating changes in the power consumption. This index is considered to 

be an  important parameter which should be examined during the design of an  

optimized vortex valve. The power index is determined by the ratio of the 

maximum radial inlet power to the tangential inlet power required to stop 
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the radial inlet flow. Characteristics and applications for the power index 

a r e  illustrated by results from an experimental investigation 

INTRODUCTION 

Technology has produced a wide variety of applications for jet-driven 

vortices. Examples include the Ftanque -Hilsch tube for energy separation, 

binary material distribution chamber for nuclear cavity reactor concepts, swi r l  

atomizer used in fuel injectors and spraying equipment, magnetohydrodynamic 

generator, vortex diode, angular rate sensors, and the vortex class of fluid 

amplifiers. Common to these applications is the production and maintenance of 

their vortex flow patterns. Depending on the application, it is usually desired 

to minimize either the pressure,  flow, or power required by the tangential 

driving jet. A performance index for evaluating the power supplied to the 

tangential driving jet is presented in  this paper. 
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The index was developed for the vortex valve shown schematically in 

figure 1. The conventional vortex valve is a short cylindrical chamber with 

two inlets - a radial inlet and a tangential nozzle. The radial inlet allows the 

fluid to enter the chamber and flow to the outlet orifice without appreciable 

pressure drop. The tangential nozzle (or nozzles) injects the fluid tangentially 

along the cylindrical wall  and thereby generates a vortex flow pattern. The 

fluid leaves the chamber through the outlet orifice located at the center of one 

o r  both end walls. 

' 

The vortex valve is a variable restrictor that modulates flow and amplifies 

signals in  fluid circuits. The total flow leaving the vortex chamber is con- 

trolled by the amount of s w i r l  imparted to the fluid inside the chamber. Typical 

outlet mass flow characteristics for a constant radial supply pressure are shown 

in figure 2. The maximum outlet flow (point R) occurs when the tangential nozzle 

flow is zero; a condition of no s w i r l  in the chamber. The minimum outlet flow 

(point T) occurs when the vortex conditions prevent radial inlet flow. At point T 

the outlet and tangential nozzle mass flow rates are equal. 

The power supplied at operating condition T ,  figure 2 ,  will be related to 

a performance index. This "vortex valve power index" represents the poten- 

tial power throttling ability of the valve. To illustrate the characteristics and 

applications for the index, the results from an  experimental investigation are 

presented. 

VORTEX VALVE POWER INDEX 

The vortex valve power index is determined by pressure -flow measurements 

external to the valve. This type of performance number circumvents the 

problem of analyzing three-dimensional flow in the chamber caused by viscous 

phenomena. For  example, observations and detailed measurements of confined 
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vortices have shown that the primary source of degraded performance results 

from inflow along the end walls (1-5); a phenomenon not indicated by inviscid 

flow theory. The effect is a short circait path between the inlet and outlet. 

Mixing efficiency of the radial and tangential inlet flows, turbulence, second- 

a r y  vortices, and three-dimensional sink flow add to the complexity of the 

vortex field (6-7). Consequently, the power index and other reported methods 

for analyzing the vortex valve a r e  based on empirical models derived from 

input-output characteristics (8-14). 

The power index is defined as the ratio of powers that would be available 

from two isentropic flow processes. The first is the isentropic power for the 

theoretical maximum outlet flow; operating condition R of figure 2. The other 

power is determined from measurements of the tangential nozzle flow during 

minimum outlet flow; condition T of figure 2.  Mathematically, the power index 

for gas is expressed: 

(A;) (Ahr) 
Power Index = 

(fq 1 (Aht) 

where 

m' r = theoretical mass flow rate through the outlet orifice with unity 

discharge coefficient. Pressure differential across  the orifice 

is the specified radial inlet pressure minus the specified exhaust 

pressure. The outlet area is considered to be extremely small 

compared to the radial inlet area. 

= measured tangential nozzle mass flow rate for  the operating condition 

of zero radial inlet flow at the specified radial inlet pressure. 

= change in enthalpy for an  isentropic flow process between the radial 

mt 

Ahr 
inlet and exhaust. 
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= change in enthalpy for  a n  isentropic flow process between the Aht 

tangential nozzle inlet and exhaust during the operating condi- 

tion of zero radial inlet flow at the specified radial inlet pres- 

sure 

For the isentropic flow process we have the following relationship: 

Ah = - 

where 

R = gas constant 

T = temperature 

P = pressure 

0 = (k - l)/k 

k = ratio of specific heats 

Subscripts 1 and 2 refer to the upstream and downstream conditions, 

re s pe c tive ly a 

Generally, the same gas at equal temperature is supplied to both the radial 

inlet and the tangential nozzle. Therefore, for these conditions the power index 

can be defined: 

where 

Pe = exhaust pressure (specified) 

Pr = radial inlet supply pressure (specified) 

Pt = tangential nozzle supply pressure 
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The numerator of equation (3) defines the theoretical power delivered to 

the valve when the tangential nozzle flow is zero. Its function is to normalize 

the denominator that represents the power supplied to the tangential nozzle 

for maintaining the radial inlet shutoff condition, point T of figure 2. An 

increase in the power index signifies an increase in  efficiency because less 

power is required to stop the radial inlet flow. This convention is similar 

to the flow turndown quantity (10) that equals the ratio of maximum to minimum 

outlet mass flow rates as given by points R and T in figure 2. 

Equation (3) can be rearranged in  the following form: 

Power Index 
(4) 

Equation (4) can be used for constructing nomograms that represent the 

functional relationship of the power index, flow turndown index, supply 

pressure ratio, and the control pressure ratio; where 

Flow turndown index = mi/mt 

Supply pressure ratio = Pr/Pe 

Control pressure ratio = (Pt - Pe)/(Pr - Pe) 

In figure 3 the control pressure ratio and the supply pressure ratio 

establish values for the power-to-flow ratio on the ordinate. For example, 

a control pressure ratio of 1 . 5  and a supply pressure ratio of 2 results in a 

power-to-flow ratio of 0.78. The power index is then obtained from the prod- 

uct of the power-to-flow ratio and the flow turndown index. Figure 3 provides 
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a convenient method for determining the power index for various supply 

pressure ratios 

Figure 4 shows another graphical method for determining the power 

index. Flow turndown index versus control pressure ratio is plotted for 

various values of power index. In this example, the figure displays the 

characteristics for the specified supply pressure ratio of 0.74. The figure 

illustrates that, for a constant power index, an increase in the control 

pressure ratio results in a n  increase in the flow turndown. The map can 

also be used to determine a n  upper l imit  for the flow turndown index if 

(1) the power index is known and (2) upper limits for the tangential and 

radial supply pressures are specified. 

The power index was developed for the vortex class of fluid amplifiers. 

However, it is expected that the power index will be useful in evaluating the 

performance of other types of vortex devices. For  example, one may desire 

to minimize the tangential nozzle flow without increasing the power consump- 

tion or changing the chamber peripheral pressure in a device that contains 

no radial inlets. A modification in  geometry may reduce the tangential nozzle 

flow but require a higher tangential nozzle supply pressure. The higher 

supply pressure, however, does not necessarily imply that the power consump- 

tion has increased. To evaluate the effects of the geometry change, the operating 

power must be computed from both pressure and flow rate values. For this 

application, the power index provides a convenient method. A constant power 

index represents no change in the power consumption. A lower number for 

the index signifies that higher power is supplied to the tangential nozzle; i. e . ,  

a decrease in efficiency. 
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EXPERIMENTAL INVESTIGATION 

The effects of varying tangential nozzle area were investigated with 

the vortex chamber shown in figure 5 .  Resu1t.s presented in this section 

illustrate an application for the power index. 

The vortex chamber used in the experiments was constructed from two 

adjacent plates with semi-circular open sections that formed both the 

cylindrical wall  of the chamber and two adjustable tangential nozzles. The 

chamber diameter was  2.54 cm (1 inch) and the distance between the end 

walls was 0.30 cm (O* 12 inch). The end walls were flat and had a smooth 

surface of approximately 16 microinch finish. The tangential nozzles, located 

at the chamber periphery, had rectangular cross  sections that extended between 

the end walls. The nozzle area was  adjusted by the position of the two plates 

that formed the cylindrical wall. Because the unit contained no radial inlets, 

the pressure at the chamber periphery was used to represent radial inlet 

pressure during the condition of zero radial inlet flow. This peripherial pres- 

sure  measurement w a s  obtained from a pressure tap located in the cylindrical 

wall 90' downstream from a tangential nozzle. The outlet, located in one of 

the end walls, was an oriiice with diameter of 0.358 cm (0.141 inch) and length 

of 0.05 cm (0.02 inch) followed by an axisymmetric 60' conical diffuser. 

The supply media was  air that varied in temperature between 77' and 81' F 

Variations in the supply temperature were recorded but not used in the flow 

calculations. The outlet flow exhausted to the atmosphere. Pressures  were 

measured with the following gages: 0 to 10 N/cm gage (15 psig), 2 

2 0 to 52 N/cm gage (75 psig), 0 to 69 N/cm2 gage (100 psig), and 0 to 3 N/cm2 
2 (4.5 psi) differential for pressures less than 10 N/cm gage (15 psig). These 

were precision gages with e r ro r s  less than 0.1 percent of full scale. Except 
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c for  the differential gage, the tangential nozzle supply pressure and the periph- 

e ra l  (radial inlet) pressure were measured with the same gage to eliminate 

e r r o r s  due to small  differences between gages. A calibrated rotameter in the 

supply line measured mass flow rate with e r r o r s  estimated to be less than 

1.5 percent of the actual value. The barometric pressure was recorded and 

used in  computing the power index and the flow turndown index. 

Figure 6 shows the effects of tangential nozzle area for a radial inlet 
pressure of 3.45 N/cm 2 gage (5 psig) in the upper plot and for 27.6 N/cm 2 

gage (40 psig) in the lower plot. For the largest nozzle area tested, the 

pressure drop across  the tangential nozzle (Pt - P ) was very small, result- 

ing in a control pressure ratio near unity. Consequently, the power index 

and flow turndown index for the largest nozzle area were nearly equal as in- 

dicated by equation (4). For the area range tested, a decrease in nozzle size 

resulted in  a n  increase in both the flow turndown index and the control pressure 

ratio. The power index also increased as the size nozzle was  reduced but it 

reached a maximum and then decreased when the nozzle area ratio (At/Ao) was 

reduced below 0.3 in the upper plot or below 0.2 in  the lower plot. The de- 

crease in power index for the smaller nozzles was probably caused by mixing 

losses in the chamber and viscous losses in  the nozzle. 

P 

The configuration with the maximum power index is considered as the most 

efficient vortex valve. For the unit tested, the maximum power index occurred 

for  a tangential nozzle geometry that had a control pressure ratio less than 

1.5; a geometry within the range of conventional designs. It was  also noted 

in the upper plot (fig. 6) that the flow turndown ratio had no distinct features 

for  determining the most efficient vortex valve. The control pressure ratio and 
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’ the flow turndown index both affected the power index curve. 

Figure 7 shows the effects of supply pressure. The upper plot was 

obtained from an  element with a tangential to outlet area ratio of 0.169. 

Characteristics for a larger nozzle (area ratio of 0.615) are presented in 

the lower plot. In both cases flow turndown ratio increased appreciably 

for reduced pressures. 

- 

The characteristics shown i n  figures 6 and 7 were appreciably different 

from those predicted by a simplified model of an  inviscid two-dimensional 

vortex. The power index, flow turndown index, and the control pressure ratio 

characteristics for the theoretical model illustrated in figure 8 are derived 

from the following relationships. The contribution to the pressure gradient by 

radial velocity component is small compared to the effect of the tangential 

velocity component Therefore, the radial momentum equation reduces to 

2 - - p -  d P  v = o  
d r  r 

The tangential momentum equation for zero axial flow is 

For specified values for the effective chamber radius (r ) and the effective 

outlet radius (ro), equations (5) and (6) can be combined and simplified by 

the following functional relationshipo 

P 

2 
P Pp - Pe = f(v ) 

In the theoretical model, the velocity from the nozzle (v,) is considered 

equal to the tangential velocity component at the peripherial boundary. 

Therefore, equation (7) can be expressed 

(7) 

Pp - Pe = f(vt)  2 
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For the tests described in this report, the velocity from the tangential 

nozzle was less than sonic. Under these conditions, the tangential nozzle 

velocity for an isentropic process is described by 
2aPt +-[ 1 - (P p / P ) O  t 3 
Pt 

Combining equations (8) and ( 9 ) >  it follows that the value for the tangential 

nozzle supply pressure (Pt) is established when the peripheral pressure (P ) 
P 

and the exhaust pressure (P,) are specified. Therefore, except for slight 

variations in  the effective outlet radius resulting from changes in mass flow 

rate, the inviscid isentropic model shows that the tangential nozzle supply 

pressure (P,) and the tangential nozzle velocity (v,) are essentially independ- 

ant of the tangential nozzle area. 

From the characteristics of the simplified theoretical model, the 

following relationships are derived: 

(a) Control pressure ratio is essentially independent of the tangential 

nozzle area; 

(b) flow turndown index is essentially inversely proportional to the 

tangential nozzle a rea ;  and 

(c) power index is essentially inversely proportional to the tangential 

nozzle area.  

However, in  figure 6, the control pressure ratio was not constant but 

increased appreciably when the tangential nozzle a rea  decreased. The char- 

acteristics of the flow turndown index also deviated from the theoretical model; 

for example, an area change from 0.2 to 0.6 caused the flow turndown index to 

decrease by a factor of 1 . 3  instead of 3 in the theoretical case. The slope of 

the power index curve changed sign in  figure 6, thus, displaying no correlation 
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to the theoretical. These large differences between theoretical and 

physical characteristics were considered to be caused by secondary 

flows not represented in the model. 

CONCLUSION 

Modifications in vortex valve geometry can increase or decrease both 

the operating pressure and flow rate of the tangential nozzle. To evaluate 

changes in the power efficiency of the unit, the power supplied to the tan- 

gential jet  must be computed. The vortex valve power index defined in the 

report provides a useful and effective approach for comparing efficiencies 

of various vortex valves. It was  concluded that the three normalized 

quantities representing pressure, flow, and power a r e  all necessary in 

optimizing the steady state performance of vortex valves. 
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NOMENCLATURE 

A area 

Ah 

k ratio of specific heats 

m measured mass flow rate 

change in enthalpy for a n  isentropic flow process 

m' 

P 

r 

R 

T 

V 

a! 

P 

theoretical mass flow rate 

pressure 

radius 

gas constant 

temperature 

velocity, tangential component 

= (k - l)/k 

density 

Subscripts 

e exhaust 

0 outlet 

p conditions at chamber periphery 

r radial inlet 

t tangential nozzle 

1 upstream conditions 

2 downstream conditions 
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